ACES scientists improve understanding of canopy-level photosynthesis
In recent years, the scientific community has increasingly turned its attention to sustainable agriculture, aiming to maximize crop yield while minimizing environmental impact. A crucial aspect of this research involves understanding the fundamental processes of plant photosynthesis and how they can be monitored at scale. One promising method for assessing photosynthetic activity is through the measurement of sun-induced chlorophyll fluorescence, a byproduct of photosynthesis that can be detected from ground-based sensors as well as from satellites in space.
The study led by Genghong Wu, a PhD student advised by Agroecosystem Sustainability Center (ASC) Director and College of Agricultural, Consumer and Environmental Sciences Professor Kaiyu Guan, and others utilized ground-based instruments to measure far-red SIF and various vegetation indices (VIs) that reflect plant health and activity. It compiled 15 site-years of SIF and VIs data from various crops (corn, soybean, and miscanthus) over a span of six years (2016-2021) within the U.S. Corn Belt (Illinois and Nebraska). Their results are published in Nature.
Read more from Agroecosystem Sustainability Center.